Skip to contents

Install the Package

Use the “remotes” package to install the package “wasserportal” directly from KWB’s GitHub site:

# install.packages("remotes")
remotes::install_github("kwb-r/wasserportal", upgrade = "never", force = TRUE)

Overview on Monitoring Stations and Parameters

Get information on monitoring stations and parameters that are available on the Wasserportal:

stations <- wasserportal::get_stations(type = c("list", "crosstable"))
#> Importing 10 station overviews from Wasserportal Berlin ... ok. (7.81 secs)
str(stations, 2)
#> List of 2
#>  $ overview_list:List of 10
#>   ..$ surface_water.water_level         : tibble [111 × 10] (S3: tbl_df/tbl/data.frame)
#>   ..$ surface_water.flow                : tibble [39 × 10] (S3: tbl_df/tbl/data.frame)
#>   ..$ surface_water.temperature         : tibble [64 × 10] (S3: tbl_df/tbl/data.frame)
#>   ..$ surface_water.conductivity        : tibble [17 × 10] (S3: tbl_df/tbl/data.frame)
#>   ..$ surface_water.ph                  : tibble [17 × 9] (S3: tbl_df/tbl/data.frame)
#>   ..$ surface_water.oxygen_concentration: tibble [17 × 10] (S3: tbl_df/tbl/data.frame)
#>   ..$ surface_water.oxygen_saturation   : tibble [17 × 10] (S3: tbl_df/tbl/data.frame)
#>   ..$ surface_water.quality             : tibble [55 × 10] (S3: tbl_df/tbl/data.frame)
#>   ..$ groundwater.level                 : tibble [902 × 11] (S3: tbl_df/tbl/data.frame)
#>   ..$ groundwater.quality               : tibble [216 × 10] (S3: tbl_df/tbl/data.frame)
#>  $ crosstable   : tibble [1,123 × 12] (S3: tbl_df/tbl/data.frame)

The data frame stations$crosstable informs about the parameters that are measured at the different monitoring stations:

The parameter abbreviations that appear as column names in the above table have the following meanings:

parameters <- wasserportal::get_overview_options()
str(parameters)
#> List of 2
#>  $ surface_water:List of 8
#>   ..$ water_level         : chr "ows"
#>   ..$ flow                : chr "odf"
#>   ..$ temperature         : chr "owt"
#>   ..$ conductivity        : chr "olf"
#>   ..$ ph                  : chr "oph"
#>   ..$ oxygen_concentration: chr "oog"
#>   ..$ oxygen_saturation   : chr "oos"
#>   ..$ quality             : chr "opq"
#>  $ groundwater  :List of 2
#>   ..$ level  : chr "gws"
#>   ..$ quality: chr "gwq"

The table of data availabilty for each monitoring station is also available in JSON format here: https://kwb-r.github.io/wasserportal/stations_crosstable.json

Provide Pipe Operator and Helper Functions

The code provided in the following requires the pipe operator %>% of the “magrittr” package and some helper functions to be defined:

`%>%` <- magrittr::`%>%`

comma_separated <- function(x) {
  paste(x, collapse = ", ")
}
  
to_plotly_title <- function(x) {
  key_values <- paste(names(x), unname(unlist(x)), sep = ": ")
  list(text = sprintf(
    "%s<br><sup>%s</sup>", 
    key_values[1L], 
    comma_separated(key_values[-1L])
  ))
}

ggplot2_date_value <- function(data, col) {
  ggplot2::ggplot(data, mapping = ggplot2::aes(
    x = Datum, 
    y = Messwert, 
    col = col
  ))
}

Groundwater Level Data

The data frame stations$overview_list$groundwater.level gives general information on the groundwater monitoring stations:

Master data

More information on the groundwater level stations (master data), such as the coordinates of the wells, can be found if you follow the web link (URL) that is given in column stammdaten_link of the above table. The “wasserportal” package provides a function to retrieve information from these links:

urls <- stations$overview_list$groundwater.level$stammdaten_link
stations_gwl_master <- wasserportal::get_wasserportal_masters_data(urls)
#> Importing master data for 902 stations from Wasserportal Berlin ... ok. (9.03 mins)

This is how the resulting table stations_gwl_master looks like:

The master data of groundwater level stations is also available in JSON format here: https://kwb-r.github.io/wasserportal/stations_gwl_master.json

Trend Classification

Groundwater level trend classification (provided by SenWeb) is visualized below.

1. Trend Classification Histogram

gwl <- stations$overview_list$groundwater.level %>% 
  dplyr::mutate(Datum = as.Date(Datum, format = "%d.%m.%Y"))

text_low_levels <- c("extrem niedrig", "sehr niedrig", "niedrig")
text_high_levels <- c("hoch", "sehr hoch", "extrem hoch")
levels_ordered <- c(text_low_levels, "normal", text_high_levels, "keine")

gwl$Klassifikation <- forcats::fct_relevel(gwl$Klassifikation, levels_ordered)

gwl_classified_only <- gwl %>% 
  dplyr::filter(Klassifikation != "keine")

percental_share_low_levels <- rounded_percentage(
  sum(gwl_classified_only$Klassifikation %in% text_low_levels), 
  basis = nrow(gwl_classified_only)
)

percental_share_high_levels <- rounded_percentage(
  sum(gwl_classified_only$Klassifikation %in% text_high_levels), 
  basis = nrow(gwl_classified_only)
)

title_text <- sprintf(
  "GW level classification (n = %d out of %d have 'classification' data)",
  nrow(gwl_classified_only), 
  nrow(gwl)
)

g1 <- gwl_classified_only %>% 
  dplyr::count(Klassifikation, Grundwasserspannung) %>% 
  dplyr::mutate(percental_share = kwb.utils::percentage(n, nrow(gwl))) %>% 
  ggplot2::ggplot(ggplot2::aes(
    x = Klassifikation,
    y = percental_share,
    fill = Grundwasserspannung
  )) +
  ggplot2::geom_bar(stat = "identity") + 
  ggplot2::labs(
    title = title_text,
    x = "Classification",
    y = "Percental share (%)"
  ) +
  ggplot2::theme_bw()

plotly::ggplotly(g1)

20.86 percent of all considered 815 groundwater level monitoring stations containing classification data (out of 902 provided by SenWeb) indicate below normal (extrem niedrig, sehr niedrig, niedrig) groundwater levels. However, only 20.86 percent are indicate above normal (hoch, sehr hoch, extrem hoch) groundwater levels.

2. Trend Classification Map

level_colors <- data.frame(
  Klassifikation = levels_ordered, 
  classi_color = c(
    "darkred", 
    "red", 
    "orange", 
    "green", 
    "lightblue", 
    "blue", 
    "darkblue", 
    "grey"
  )
)

rechtswert <- "Rechtswert_UTM_33_N"
hochwert <- "Hochwert_UTM_33_N"

gwl_classified_only_with_coords <- gwl_classified_only %>% 
  dplyr::mutate(
    Messstellennummer = as.character(Messstellennummer),
  ) %>% 
  dplyr::inner_join(
    stations_gwl_master %>%
      tibble::as_tibble() %>% 
      dplyr::select(dplyr::all_of(c("Nummer", rechtswert, hochwert))) %>% 
      dplyr::rename(Messstellennummer = "Nummer"),
    by = "Messstellennummer"
  ) %>% 
  dplyr::left_join(
    level_colors, 
    by = "Klassifikation"
  ) %>% 
  sf::st_as_sf(
    coords = c(rechtswert, hochwert), 
    crs = 25833
  ) %>% 
  sf::st_transform(crs = 4326)

if(nrow(gwl_classified_only_with_coords) > 0) {

# Create a vector of labels for each row in gwl_classified_only_with_coords
labs <- wasserportal::columns_to_labels(
  data = gwl_classified_only_with_coords, 
  columns = c(
    "Messstellennummer", 
    "Grundwasserspannung", 
    "Klassifikation", 
    "Datum"
  ),
  fmt = "<p>%s: %s</p>",
  sep = ""
)

# Print Map
gwlmap <- gwl_classified_only_with_coords %>% 
  leaflet::leaflet() %>%
  leaflet::addTiles() %>% 
  leaflet::addProviderTiles(leaflet::providers$CartoDB.Positron) %>%
  leaflet::addCircles(
    color = ~classi_color,
    label = lapply(labs, htmltools::HTML)
  ) %>% 
  leaflet::addLegend(
    position = "topright",
    colors = level_colors$classi_color,
    labels = level_colors$Klassifikation,
    title = sprintf(
      "Classification (latest data: %s)",
      max(gwl_classified_only_with_coords$Datum)
    )
  )

htmlwidgets::saveWidget(
  gwlmap, 
  "./map_gwl-trend.html", 
  title = "GW level trend"
)

gwlmap
}

GW level trend plot is also available on a full html page here: https://kwb-r.github.io/wasserportal/map_gwl-trend.html

Groundwater Levels: One Station

The following code downloads and plots groundwater level data for one monitoring station:

station_gwl <- stations$overview_list$groundwater.level[1L, ]

gw_level <- wasserportal::read_wasserportal_raw_gw(
  station = station_gwl$Messstellennummer, 
  stype = "gws"
  #, as_text = TRUE, dbg = TRUE
) %>% 
  dplyr::mutate(Label = sprintf("%s (%s)", Parameter, Einheit))

head(gw_level)

g <- gw_level %>% 
  ggplot2_date_value(col = "Label") +
  ggplot2::geom_line() +
  ggplot2::geom_point() +
  ggplot2::theme_bw()

plotly::ggplotly(g) %>%
  plotly::layout(title = to_plotly_title(station_gwl))

Groundwater Levels: Multiple Stations

The following code downloads and plots groundwater level data for multiple monitoring stations:

gw_level_multi <- data.table::rbindlist(lapply(
  stations$overview_list$groundwater.level$Messstellennummer, 
  function(id) { 
    kwb.utils::catAndRun(
      sprintf("Downloading Messstellennummer == '%s'", id), 
      wasserportal::read_wasserportal_raw_gw(station = id, stype = "gws"), 
      dbg = FALSE
    )
  }
))

readr::write_csv(gw_level_multi, file = "groundwater_level.csv")

# Plot 10 GW level
selected_stations <- stations$overview_list$groundwater.level$Messstellennummer[1:10]

g <- gw_level_multi %>% 
  dplyr::filter(Messstellennummer %in% selected_stations) %>% 
  dplyr::mutate(Messstellennummer = as.character(Messstellennummer)) %>% 
  ggplot2_date_value(col = "Messstellennummer") +
  ggplot2::labs(title = "GW level (m above NN)") +
  ggplot2::geom_line() +
  ggplot2::geom_point() +
  ggplot2::theme_bw()

plotly::ggplotly(g)

The data of all GW level stations is also available in CSV format here: https://kwb-r.github.io/wasserportal/groundwater_level.csv

Groundwater Quality Data

Overview data of GW level stations can be requested as shown below:

stations_gwq <- wasserportal::get_wasserportal_stations_table(
  type = parameters$groundwater$quality
)

Master data of groundwater quality stations can be requested as shown below:

stations_gwq_master <- wasserportal::get_wasserportal_masters_data(
  master_urls = stations_gwq$stammdaten_link
)
#> Importing master data for 216 stations from Wasserportal Berlin ... ok. (2.24 mins)

The master data of groundwater quality stations is also available in JSON format here: https://kwb-r.github.io/wasserportal/stations_gwq_master.json

Groundwater Quality: One Station

The following code downloads and plots groundwater quality data for one monitoring station:

station_gwq <- stations$overview_list$groundwater.quality[1L, ]

gw_quality <- wasserportal::read_wasserportal_raw_gw(
  station = station_gwq$Messstellennummer, 
  stype = "gwq"
)

head(gw_quality)

unique(gw_quality$Parameter)

g <- gw_quality %>%  
  dplyr::filter(Parameter == "Sulfat") %>% 
  ggplot2_date_value(col = "Parameter") +
  ggplot2::geom_line() +
  ggplot2::geom_point() +
  ggplot2::theme_bw()

plotly::ggplotly(g) %>%
  plotly::layout(title = to_plotly_title(station_gwq))

Groundwater Quality: Multiple Stations

The following code downloads and plots groundwater quality data for multiple monitoring stations:

gw_quality_multi <- data.table::rbindlist(lapply(
  stations$overview_list$groundwater.quality$Messstellennummer, 
  function(id) kwb.utils::catAndRun(
    sprintf("Downloading Messstellennummer == '%s'", id), 
    wasserportal::read_wasserportal_raw_gw(station = id, stype = "gwq"), 
    dbg = FALSE
  )
))

readr::write_csv(gw_quality_multi, "groundwater_quality.csv")

# Plot 10 GW quality 
selected_stations <- stations$overview_list$groundwater.quality$Messstellennummer[1:10]

g <- gw_quality_multi %>% 
  dplyr::filter(Messstellennummer %in% selected_stations) %>% 
  dplyr::mutate(Messstellennummer = as.character(Messstellennummer)) %>% 
  dplyr::filter(Parameter == "Sulfat") %>% 
  ggplot2_date_value(col = "Messstellennummer") +
  ggplot2::labs(title = "GW quality (Sulfat)") +
  ggplot2::geom_line() +
  ggplot2::geom_point() +
  ggplot2::theme_bw()

plotly::ggplotly(g)

The data of all GW quality stations is also available in CSV format here: https://kwb-r.github.io/wasserportal/groundwater_quality.csv