Skip to contents
library(keys.lid)
### define paths
paths_list <- list(
root_dir = keys.lid::extdata_file(),
green_roof_model = "<root_dir>/validation/green_roof",
green_roof_model_berlin = "<green_roof_model>/berlin",
green_roof_model_neubrandenburg = "<green_roof_model>/neubrandenburg",
raw_weather_data = "<root_dir>/rawdata/validation_data_green_roof"
)

paths <- kwb.utils::resolve(paths_list)

# kuras (Neubrandenburg): rain mm/5min, runoff mm/5min, dt =5min, green roof area = 101 m2
# basar (Berlin): rain mm/5min, runoff mm/5min, dt = 5min, green roof area = 194 m2

# load observed rainfall, runoff and temperature, transforming to mm/hour
obs.neubrandenburg <- keys.lid::readObservations(
  subfolder = paths$raw_weather_data,
  rainFile = 'obs_rain_5min_Neubrandenburg.txt',
  runoffFile = 'obs_runoff_5min_Neubrandenburg.txt',
  temperatureFile = 'obs_temperature_10min_Neubrandenburg.txt',
  dateTimetz = 'Etc/GMT-1', 
  dateTimeformat = '%Y-%m-%d %H:%M:%S',
  to_mmperhour = list(rain=1/(5/60), runoff=1/(5/60)), 
  NAval = list(rain = -999, runoff = -999, temperature = -999))

obs.berlin <- keys.lid::readObservations(
  subfolder = paths$raw_weather_data,
  rainFile = 'obs_rain_5min_Berlin.txt',
  runoffFile = 'obs_runoff_5min_Berlin.txt',
  temperatureFile = 'obs_temperature_10min_Berlin.txt',
  dateTimetz = 'Etc/GMT-1', 
  dateTimeformat = '%Y-%m-%d %H:%M:%S',
  to_mmperhour = list(rain=1/(5/60), runoff=1/(5/60)),
  NAval = list(rain = -999, runoff = -999, temperature = -999))

# load modeled runoff, together with rainfall and temperature used as model inputs,
# transforming to mm/hour. since SWMM uses daily Tmax, Tmin and a sinusoidal
# function to produce continuous T data, readPredictions does the same using the 
# same formulas given in SWMM's reference manual
mod.neubrandenburg <- keys.lid::readPredictions(
  subfolder = paths$green_roof_model_neubrandenburg,
  rainFile = 'obs_rain_5min_Neubrandenburg.txt',
  runoffFile = 'neubrand.out', # SWMM output file
  temperatureFile = 'obs_temp_daily_Neubrandenburg.txt',
  dateTimetz = 'Etc/GMT-1',
  dateTimeformat = '%Y-%m-%d %H:%M',
  to_mmperhour = list(rain = 1/(5/60), runoff = 3600/101),
  parTcontinuous = list(longitude = -13.26,
                        standardMeridian = -15,
                        latitude = 53.56,
                        TmaxDay0 = 17))

mod.berlin <- keys.lid::readPredictions(
  subfolder = paths$green_roof_model_berlin,
  rainFile = 'obs_rain_5min_Berlin.txt',
  runoffFile = 'bbr18.out', # SWMM output file
  temperatureFile = 'obs_temp_daily_Berlin.txt',
  dateTimetz = 'Etc/GMT-1',
  dateTimeformat = '%Y-%m-%d %H:%M',
  to_mmperhour = list(rain = 1/(5/60), runoff = 3600/194),
  parTcontinuous = list(longitude = -13.41,
                        standardMeridian = -15,
                        latitude = 52.50,
                        TmaxDay0 = 9))

# make joint rainfall-runoff events (observed), and remove bad events
obs.neubrandenburg$rain_runoff <- keys.lid::makeRainfallRunoffEvents(
  rainfalldata = obs.neubrandenburg$rain,
  runoffdata = obs.neubrandenburg$runoff)

obs.berlin$rain_runoff <- keys.lid::makeRainfallRunoffEvents(
  rainfalldata = obs.berlin$rain,
  runoffdata = obs.berlin$runoff)

obs.neubrandenburg$rain_runoff <- keys.lid::removeBadEvents(
  events = obs.neubrandenburg$rain_runoff,
  mindur_sec = 300, 
  removeruncoeffNA = TRUE,
  removezerorain = TRUE,
  removeruncoeff_gt_1 = TRUE)

obs.berlin$rain_runoff <- keys.lid::removeBadEvents(
  events = obs.berlin$rain_runoff,
  mindur_sec = 300, 
  removeruncoeffNA = TRUE,
  removezerorain = TRUE,
  removeruncoeff_gt_1 = TRUE)

# make joint rainfall-runoff events (modeled), and remove bad events
mod.neubrandenburg$rain_runoff <-  keys.lid::makeRainfallRunoffEvents(
  rainfalldata = mod.neubrandenburg$rain,
  runoffdata = mod.neubrandenburg$runoff)

mod.berlin$rain_runoff <- keys.lid::makeRainfallRunoffEvents(
  rainfalldata = mod.berlin$rain,
  runoffdata = mod.berlin$runoff)

mod.neubrandenburg$rain_runoff <- keys.lid::removeBadEvents(
  events = mod.neubrandenburg$rain_runoff,
  mindur_sec = 300, 
  removeruncoeffNA = TRUE,
  removezerorain = TRUE,
  removeruncoeff_gt_1 = TRUE)

mod.berlin$rain_runoff <- keys.lid::removeBadEvents(
  events = mod.berlin$rain_runoff,
  mindur_sec = 300, 
  removeruncoeffNA = TRUE,
  removezerorain = TRUE,
  removeruncoeff_gt_1 = TRUE)

# compute max. temperature in antecedent dry weather period (ADWP),
# observed
obs.neubrandenburg$rain_runoff$TmaxADWP <- keys.lid::TmaxADWP(obs.neubrandenburg)
obs.berlin$rain_runoff$TmaxADWP <- keys.lid::TmaxADWP(obs.berlin)

# compute max. temperature in antecedent dry weather period (ADWP),
# modeled
mod.neubrandenburg$rain_runoff$TmaxADWP <- keys.lid::TmaxADWP(mod.neubrandenburg)
mod.berlin$rain_runoff$TmaxADWP <- keys.lid::TmaxADWP(mod.berlin)

# aggregate to monthly level
obs.neubrandenburg$monthly <- keys.lid::monthlyPattern(obs.neubrandenburg)
mod.neubrandenburg$monthly <- keys.lid::monthlyPattern(mod.neubrandenburg)
obs.berlin$monthly <- keys.lid::monthlyPattern(obs.berlin)
mod.berlin$monthly <- keys.lid::monthlyPattern(mod.berlin)

# check temporal autocorrelation at monthly level
acf(obs.neubrandenburg$monthly$runoffcoefficient, lag.max = 5)
acf(obs.berlin$monthly$runoffcoefficient, lag.max = 5)

# make regressions to explore patterns at monthly level
reg.obs.neubrandenburg <- lm(
  formula = runoffcoefficient ~ rain + meanTmaxADWP, 
  data = obs.neubrandenburg$monthly)
reg.mod.neubrandenburg <- lm(
  formula = runoffcoefficient ~ rain + meanTmaxADWP, 
  data = mod.neubrandenburg$monthly)

reg.obs.berlin <- lm(
  formula = runoffcoefficient ~ rain + meanTmaxADWP, 
  data = obs.berlin$monthly)
reg.mod.berlin <- lm(
  formula = runoffcoefficient ~ rain + meanTmaxADWP, 
  data = mod.berlin$monthly)

summary(reg.obs.neubrandenburg)
summary(reg.mod.neubrandenburg)
summary(reg.obs.berlin)
summary(reg.mod.berlin)

# check collinearity
car::vif(reg.obs.neubrandenburg)
car::vif(reg.obs.berlin)