Monthly irrigation values provided by AVB (in cubicmeters) downscaled to daily values (by dividing with "days_in_month" and normalised to mm/squaremeter by dividing with assumed irrigation area (44111068 m2)
Format
A data.frame with 8835 rows and 3 variables:
- year
year
- month
month
- days_in_month
days in month
- date_start
date start
- date_end
date end
- irrigation_area_sqm
irrigation area in squaremeter
- "groundwater.mmPerDay
irrigation using "groundwater" (mm/sqm)
- "clearwater.mmPerDay
irrigation using "clearwater" (mm/sqm)
)
Examples
if (FALSE) { # \dontrun{
install.packages(c("dplyr", "tidyr"))
irrigation_file <- system.file("extdata/input-data/Beregnungsmengen_AVB.csv",
package = "flextreat.hydrus1d")
# irrigation_area <- rgdal::readOGR(dsn = shape_file)
# irrigation_area_sqm <- irrigation_area$area # 44111068m2
## 2700ha (https://www.abwasserverband-bs.de/de/was-wir-machen/verregnung/)
irrigation_area_sqm <- 27000000
irrigation <- read.csv2(irrigation_file) %>%
dplyr::select(- .data$Monat) %>%
dplyr::rename(irrigation_m3 = .data$Menge_m3,
source = .data$Typ,
month = .data$Monat_num,
year = .data$Jahr) %>%
dplyr::mutate(date_start = as.Date(sprintf("%d-%02d-01",
.data$year,
.data$month)),
days_in_month = as.numeric(lubridate::days_in_month(.data$date_start)),
date_end = as.Date(sprintf("%d-%02d-%02d",
.data$year,
.data$month,
.data$days_in_month)),
source = kwb.utils::multiSubstitute(.data$source,
replacements = list("Grundwasser" = "groundwater.mmPerDay",
"Klarwasser" = "clearwater.mmPerDay")),
irrigation_cbmPerDay = .data$irrigation_m3/.data$days_in_month,
irrigation_area_sqm = irrigation_area_sqm,
irrigation_mmPerDay = 1000*irrigation_cbmPerDay/irrigation_area_sqm) %>%
dplyr::select(.data$year,
.data$month,
.data$days_in_month,
.data$date_start,
.data$date_end,
.data$source,
.data$irrigation_mmPerDay,
.data$irrigation_area_sqm) %>%
tidyr::pivot_wider(names_from = .data$source,
values_from = .data$irrigation_mmPerDay)
} # }
head(flextreat.hydrus1d::irrigation)
#> # A tibble: 6 × 8
#> year month days_in_month date_start date_end irrigation_area_sqm
#> <int> <int> <dbl> <date> <date> <dbl>
#> 1 2017 1 31 2017-01-01 2017-01-31 27000000
#> 2 2017 2 28 2017-02-01 2017-02-28 27000000
#> 3 2017 3 31 2017-03-01 2017-03-31 27000000
#> 4 2017 4 30 2017-04-01 2017-04-30 27000000
#> 5 2017 5 31 2017-05-01 2017-05-31 27000000
#> 6 2017 6 30 2017-06-01 2017-06-30 27000000
#> # ℹ 2 more variables: groundwater.mmPerDay <dbl>, clearwater.mmPerDay <dbl>