Here’s some general information about sema.berlin.pipes.
Field | Values |
---|---|
Package | sema.berlin.pipes |
Title | ML-Based Prediction of Structural Condition of Individual Sewer Pipes |
Version | 0.0.0.9000 |
Authors@R | c(person(given = "Mathias", family = "Riechel", role = c("aut", "cre"), email = "mathias.riechel@kompetenz-wasser.de"), person(given = "Kompetenzzentrum Wasser Berlin gGmbH (KWB)", role = "cph")) |
Description | This package allows to predict the structural condition of individual sewer pipes. It is based on the machine learning algorithm Random Forest and contains functions for model training, test, performance evaluation and deployment for pipe priorisation. |
License | MIT + file LICENSE |
URL | https://github.com/KWB-R/sema.berlin.pipes |
BugReports | https://github.com/KWB-R/sema.berlin.pipes/issues |
Encoding | UTF-8 |
LazyData | true |
Imports | caret (>= 6.0-85), data.table, dplyr, doSNOW, forcats, foreach, ggplot2 (>= 3.2.1), kwb.utils (>= 0.5.0), parallel, pROC, randomForest, RColorBrewer, sema.berlin, sema.berlin.app, scales, tidyr, yaml (>= 2.2.0), verification |
Remotes | github::kwb-r/sema.berlin.app, github::kwb-r/sema.berlin.utils |
Suggests | covr |
RoxygenNote | 7.1.1 |
RemoteType | github |
RemoteHost | api.github.com |
RemoteRepo | sema.berlin.pipes |
RemoteUsername | KWB-R |
RemoteRef | HEAD |
RemoteSha | 8edc42f7da21b8799ad655417957074dfe7ad451 |
GithubRepo | sema.berlin.pipes |
GithubUsername | KWB-R |
GithubRef | HEAD |
GithubSHA1 | 8edc42f7da21b8799ad655417957074dfe7ad451 |
NeedsCompilation | no |
Packaged | 2021-05-28 11:38:01 UTC; mrustl |
Author | Mathias Riechel [aut, cre], Kompetenzzentrum Wasser Berlin gGmbH (KWB) [cph] |
Maintainer | Mathias Riechel <mathias.riechel@kompetenz-wasser.de> |
Built | R 4.0.4; ; 2021-05-28 11:38:02 UTC; windows |
This section analyzes the recursive package dependencies of sema.berlin.pipes.
Nodes are packages. Edges point in the direction of dependence.
node | outDegree | inDegree | numRecursiveDeps | numRecursiveRevDeps | betweenness | pageRank |
---|
node | outDegree | inDegree | numRecursiveDeps | numRecursiveRevDeps | betweenness | pageRank |
---|---|---|---|---|---|---|
CircStats | 2 | 1 | 7 | 2 | 0.000 | 0.003 |
Formula | 1 | 1 | 4 | 3 | 0.091 | 0.003 |
Hmisc | 18 | 1 | 68 | 2 | 43.367 | 0.003 |
KernSmooth | 1 | 1 | 4 | 5 | 0.000 | 0.004 |
MASS | 5 | 5 | 5 | 18 | 10.333 | 0.007 |
Matrix | 6 | 3 | 7 | 20 | 16.893 | 0.004 |
ModelMetrics | 2 | 1 | 7 | 2 | 1.250 | 0.003 |
R6 | 0 | 8 | 0 | 26 | 0.000 | 0.007 |
RColorBrewer | 0 | 4 | 0 | 16 | 0.000 | 0.004 |
Rcpp | 2 | 10 | 5 | 19 | 21.917 | 0.016 |
SQUAREM | 0 | 1 | 0 | 6 | 0.000 | 0.003 |
askpass | 1 | 1 | 1 | 5 | 5.000 | 0.006 |
backports | 0 | 1 | 0 | 5 | 0.000 | 0.005 |
base64enc | 0 | 3 | 0 | 14 | 0.000 | 0.005 |
boot | 2 | 2 | 4 | 3 | 1.000 | 0.005 |
bslib | 7 | 1 | 16 | 4 | 16.500 | 0.003 |
cachem | 2 | 1 | 3 | 4 | 0.000 | 0.003 |
caret | 15 | 1 | 70 | 1 | 20.650 | 0.003 |
checkmate | 2 | 1 | 2 | 4 | 4.333 | 0.003 |
class | 3 | 1 | 6 | 4 | 0.417 | 0.004 |
cli | 2 | 1 | 6 | 20 | 0.333 | 0.003 |
cluster | 4 | 1 | 4 | 3 | 0.516 | 0.003 |
codetools | 0 | 1 | 0 | 4 | 0.000 | 0.004 |
colorspace | 4 | 1 | 5 | 16 | 2.833 | 0.005 |
commonmark | 0 | 1 | 0 | 4 | 0.000 | 0.003 |
compiler | 0 | 1 | 0 | 2 | 0.000 | 0.004 |
cowplot | 7 | 1 | 38 | 2 | 0.900 | 0.003 |
crayon | 3 | 2 | 5 | 22 | 5.900 | 0.004 |
crosstalk | 4 | 1 | 12 | 3 | 0.200 | 0.003 |
curl | 0 | 1 | 0 | 4 | 0.000 | 0.004 |
data.table | 1 | 4 | 5 | 6 | 2.450 | 0.005 |
digest | 1 | 4 | 1 | 24 | 0.417 | 0.006 |
doSNOW | 4 | 1 | 5 | 1 | 1.700 | 0.003 |
dotCall64 | 0 | 1 | 0 | 4 | 0.000 | 0.004 |
dplyr | 13 | 6 | 22 | 7 | 43.335 | 0.004 |
dtw | 5 | 1 | 5 | 2 | 2.500 | 0.003 |
ellipsis | 1 | 9 | 2 | 24 | 0.000 | 0.008 |
evaluate | 1 | 1 | 5 | 5 | 0.000 | 0.003 |
fansi | 0 | 2 | 0 | 20 | 0.000 | 0.004 |
farver | 0 | 1 | 0 | 15 | 0.000 | 0.004 |
fastmap | 0 | 2 | 0 | 5 | 0.000 | 0.005 |
fields | 4 | 1 | 43 | 2 | 40.500 | 0.003 |
forcats | 4 | 1 | 18 | 1 | 1.400 | 0.003 |
foreach | 3 | 3 | 3 | 3 | 4.700 | 0.004 |
foreign | 3 | 1 | 5 | 3 | 0.191 | 0.003 |
fs | 1 | 1 | 5 | 6 | 3.000 | 0.004 |
generics | 1 | 3 | 5 | 9 | 0.143 | 0.004 |
ggplot2 | 13 | 10 | 37 | 13 | 306.016 | 0.009 |
glue | 1 | 10 | 5 | 31 | 19.343 | 0.012 |
gower | 0 | 1 | 0 | 3 | 0.000 | 0.003 |
This section analyzes the dependency relationships between functions within sema.berlin.pipes.
Nodes are functions. Edges point in the direction of dependence.
node | type | isExported | coveredLines | totalLines | coverageRatio | meanCoveragePerLine | filename | betweenness | outDegree | inDegree | numRecursiveDeps | numRecursiveRevDeps | pageRank |
---|
node | type | isExported | coveredLines | totalLines | coverageRatio | meanCoveragePerLine | filename | betweenness | outDegree | inDegree | numRecursiveDeps | numRecursiveRevDeps | pageRank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
allocate_class_weights | function | false | 0 | 7 | 0.000 | 0.000 | R/model_training.R | 0.000 | 0 | 4 | 0 | 4 | 0.034 |
cc_to_character | function | false | 0 | 4 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
cc_to_integer | function | true | 0 | 2 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
check_input_variables | function | true | 0 | 40 | 0.000 | 0.000 | R/model_training.R | 0.000 | 5 | 0 | 10 | 0 | 0.019 |
compare_models_plot | function | false | 0 | 9 | 0.000 | 0.000 | R/plotting.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
confine_data | function | true | 0 | 1 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
distinguish_concrete | function | false | 0 | 16 | 0.000 | 0.000 | R/other_functions.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
downsample | function | true | 0 | 9 | 0.000 | 0.000 | R/data_preparation.R | 4.000 | 1 | 4 | 1 | 4 | 0.034 |
get_balance_weights | function | true | 0 | 3 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
get_complete_model_performance | function | true | 0 | 5 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 3 | 0 | 3 | 0 | 0.019 |
get_confusion_matrix | function | true | 0 | 2 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 1 | 0 | 1 | 0.025 |
get_deviation_at_network_level | function | false | 0 | 8 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 1 | 0 | 4 | 0.026 |
get_false_negative_rate_sb1 | function | false | 0 | 3 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 1 | 0 | 4 | 0.026 |
get_false_positive_rate_sb1 | function | false | 0 | 3 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 1 | 0 | 4 | 0.026 |
get_max_equal_samplesizes | function | true | 0 | 4 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
get_metrics | function | true | 0 | 18 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 4 | 0 | 4 | 0.034 |
get_metrics_sb1 | function | false | 0 | 20 | 0.000 | 0.000 | R/performance_metrics.R | 12.000 | 4 | 3 | 4 | 3 | 0.029 |
get_percentage_sehr_schlecht_for_perc_ranked | function | true | 0 | 6 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 1 | 0 | 1 | 0.022 |
get_true_positive_rate_sb1 | function | false | 0 | 1 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 1 | 0 | 4 | 0.026 |
group_to_cohorts | function | true | 0 | 26 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
load_cctv_gis_data | function | true | 0 | 1 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
make_prediction | function | true | 0 | 6 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 5 | 0 | 5 | 0.040 |
normalize | function | true | 0 | 1 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 1 | 0 | 1 | 0.036 |
normalize_all | function | true | 0 | 3 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 1 | 0 | 1 | 0 | 0.019 |
one_hot_encode | function | true | 0 | 2 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
one_sim_cross_validation | function | true | 0 | 25 | 0.000 | 0.000 | R/model_training.R | 0.000 | 3 | 0 | 4 | 0 | 0.019 |
plot_condition_vs_prediction_of_top_percent | function | true | 0 | 7 | 0.000 | 0.000 | R/plotting.R | 0.000 | 1 | 0 | 1 | 0 | 0.019 |
plot_condition_vs_prediction_ranks | function | true | 0 | 17 | 0.000 | 0.000 | R/plotting.R | 0.000 | 1 | 0 | 1 | 0 | 0.019 |
plot_condition_vs_prediction_ranks_hist | function | true | 0 | 4 | 0.000 | 0.000 | R/plotting.R | 0.000 | 1 | 0 | 1 | 0 | 0.019 |
plot_roc_curve | function | true | 0 | 2 | 0.000 | 0.000 | R/plotting.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
plot_sensitivity | function | true | 0 | 11 | 0.000 | 0.000 | R/plotting.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
plot_sensitivity_2d | function | true | 0 | 9 | 0.000 | 0.000 | R/plotting.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
rank_predictions | function | true | 0 | 7 | 0.000 | 0.000 | R/performance_metrics.R | 0.000 | 0 | 3 | 0 | 3 | 0.069 |
rect_best | function | true | 0 | 1 | 0.000 | 0.000 | R/plotting.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
save_df | function | true | 0 | 6 | 0.000 | 0.000 | R/other_functions.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
shuffle_data | function | true | 0 | 1 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 1 | 0 | 5 | 0.049 |
split_data | function | true | 0 | 5 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
threshold_combinations | function | true | 0 | 7 | 0.000 | 0.000 | R/model_training.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
tidy_rehab_info | function | true | 0 | 11 | 0.000 | 0.000 | R/data_preparation.R | 0.000 | 0 | 0 | 0 | 0 | 0.019 |
tune_cutoffs | function | true | 0 | 36 | 0.000 | 0.000 | R/model_training.R | 0.000 | 5 | 0 | 10 | 0 | 0.019 |
tune_hyperparameters | function | true | 0 | 38 | 0.000 | 0.000 | R/model_training.R | 0.000 | 6 | 0 | 11 | 0 | 0.019 |
Report built with pkgnet v0.4.1
Copyright © 2017-2019 Uptake. 3-Clause BSD License.